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Abstract

Transient wave propagation of isotropic thin plates using a higher-order plate theory is presented in this paper. The
aim of this investigation is to assess the applicability of the higher-order plate theory in describing wave behavior of
isotropic plates at higher frequencies. Both extensional and flexural waves are considered. A complete discussion of dis-
persion of isotropic plates is first investigated. All the wave modes and wave behavior for each mode in the low and
high-frequency ranges are provided in detail. Using the dispersion relation and integral transforms, exact integral solu-
tions for an isotropic plate subjected to pure impulse load and a number of wave excitations based on the higher-order
theory are obtained and asymptotic solutions which highlight the physics of waves are also presented. The axisymmetric
three-dimensional analytical solutions of linear wave equations are also presented for comparison. Results show that
the higher-order theory can predict the wave behavior closely with exact linear wave solutions at higher frequencies.
� 2004 Elsevier Ltd. All rights reserved.
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0. Introduction

The theory of stress waves of elastic media shows that in an infinite isotropic elastic solid an arbitrary dis-
turbance is propagated by means of three types of bulk waves (Achenbach, 1984), longitudinal (P) waves,
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shear vertical (SV), and shear horizontal (SH) waves, each traveling with its own constant velocity. Conven-
tional ultrasonic nondestructive methods based on these waves have been used to inspect flaws with some
success (Krautkramer and Krautkramer, 1990; Bray and McBride, 1992). Most inspection techniques, such
as conventional ultrasonics or eddy currents, require a transducer to be scanned over each point of the struc-
ture which is to be inspected. This is a time-consuming process and cannot inspect in inaccessible areas.

For thin plates, the longitudinal and shear vertical waves experience repeated reflections at the upper and
lower surfaces alternately and the resulting disturbance propagation from their mutual interference is
guided by the plate surfaces and is directed along the plate. The guided wave can be modeled by imposing
surface boundary conditions on the equations of motion and can effectively model the wave behavior. How-
ever, this approach introduces dispersion phenomenon, that is, the velocity of propagation of a disturbance
along the plate being a function of frequency or, equivalently, wavelength. Consequently, the shape of the
signal of a wave packet (a short-time wave train) may vary with the distance and time of propagation. An
important feature of guided wave propagation is that there are generally an infinite number of modes, each
corresponding to a particular mode of wave propagation. In addition, three types of wave modes, exten-
sional, flexural, and SH waves, can coexist at any given frequency. This is in contrast to bulk waves which
exhibit primarily three types of waves. Mode conversion can in general occur at boundaries and at any
other discontinuities such as defects, thus multi-mode waves need to be interpreted. Another key charac-
teristic of guided waves is that they can propagate over very long distances because the structure, or wave-
guide, retains the energy by its surface boundaries and a large region can therefore be interrogated for each
transducer position efficiently. Consequently, the use of guided waves in the ultrasonic nondestructive eval-
uation of structural components such as plate-like structures has received considerable attention over the
past two decades (Rose, 1999). More recently, active diagnostic techniques are being used by exciting ultra-
sonic signals from smart materials mounted or embedded in the structure for detecting localized damage in
plate-like structures. The development of diagnostic techniques require the study of complicated wave
propagation phenomena and relies strongly on the use of predictive modeling tools to enable the best
structural health monitoring strategies to be identified and their sensitivities to be evaluated.

Analyzing waves in structures is often categorized into three methods. They are methods based on three-
dimensional elasticity, structural theories, and numerical methods. Three-dimensional elasticity wave solu-
tions are scarce, often with the help of Fourier time and space transforms (e.g., Lih and Mal, 1995). Even
they exist, to acquire wave solutions at high frequencies involving many wave modes can be very time con-
suming. Numerical methods such as finite element and finite difference analyses are particularly very suited
to structures of very complex geometry. Due to their approximate nature, dispersion error can incur in the
wave propagation solutions. Although it is possible to reduce the dispersion error by simply refining the
discretization in space and time, such refinement imposes significant increase in computational cost, espe-
cially at high frequencies. In addition, the numerical results are difficult to provide physical interpretation
of the wave phenomena. Overall, the computational requirements of the two methods prohibit its use in the
majority of practical, real-time structural health monitoring systems. The most popular method is based on
structural theories. These theories arrive at comparatively simple but approximate differential equations for
describing the wave propagation phenomena. Often the equations can be solved for a wide variety of
boundary conditions. One main advantage of the method is due to the efficiency the methods provided
without sacrificing much in accuracy. However, the range of applicability can be limited by various con-
straints (e.g., kinematics) hypotheses with which they are generated.

Most ultrasonic inspection techniques and structural health monitoring applications are based on the
generation of fundamental wave modes at low frequencies or with large wavelengths. Usually a single wave
mode in a relatively nondispersive low frequency region is excited (Alleyne and Cawley, 1992; Cawley and
Alleyne, 1996). Using the low frequency excitations, only a relatively large size of damages can be detected.
At higher frequency ranges beyond the cut-off frequencies however, the wavelengths are much smaller
which allows for smaller damage sizes to be detected and located. This wave mode used for monitoring
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may generate a variety of other modes due to interactions with the discontinuity. In addition, different types
of wave modes can be used concurrently apart from the lowest order wave. Different types of wave modes
may be sensitive to different types of damages.

In examining waves in isotropic solids, traditionally the method of potentials where the modes can be
modeled by each potential has been used in which the displacements are expressed in terms of the poten-
tials. Here a displacement approach for the solutions based on the higher-order plate theory and three-
dimensional (3-D) elasticity theory is used, that is, solving the displacement equations of motion directly.
This method may be extended in analyzing the composites where the potentials do not exist. The range of
validity of the higher-order theory is determined through comparison with the solutions by three-dimen-
sional elasticity.

In this paper, a higher-order plate theory is developed to describe the wave behavior in linearly isotropic
thin plates. In the context of wave propagation, thin plates are defined as the plate thickness being several
times smaller than a typical wavelength. In Section 1, the higher-order plate theory is formulated with non-
dimensional variables. The dispersion curves of extensional and flexural waves and their limits in the lower
and high frequencies of various wave modes in plate theory are discussed in detail in Section 2. The Green�s
functions and the wave solutions for a number of wave excitation under axisymmetric deformation are devel-
oped in Sections 3 and 4. The methods of stationary phase and Airy approximation are used to obtain com-
paratively simple asymptotic solutions for the wave response of the plate for large values of time and long
distances from the excitation locations. In Section 5, three-dimensional elasticity wave solutions for symmet-
ric and antisymmetric waves under axisymmetric deformation are also solved. A comparison of dispersive
curves between the plate and 3-D elasticity solution are made. A comparison of transient wave responses
to seven-peak and pure impulse excitations between the two theories are studied and discussed in Section 6.
Finally, conclusions are made regarding the validity of the higher-plate theory in the range of frequencies.
1. Formulation of the higher-order plate theory

In modeling the transient wave propagation of thin plate-like structures using two-dimensional plate the-
ory, rather than three-dimensional elasticity theory, it is possible, in principle, to expand the displacement
field of a plate in terms of the thickness coordinate up to any desired degree. To account for the effects of trans-
verse shear deformation and rotary inertia and to improve the accuracy of the extensional wave motion by
taking the first-order normal strain and second-order transverse shear strains into consideration, a consistent
displacement field may be presented in the following by expanding the terms up to the second-order:
u1ðx; z; tÞ ¼ uðx; tÞ þ zw1ðx; tÞ þ z2u1ðx; tÞ;

u2ðx; z; tÞ ¼ vðx; tÞ þ zw2ðx; tÞ þ z2u2ðx; tÞ;
u3ðx; z; tÞ ¼ wðx; tÞ þ zw3ðx; tÞ;

ð1:1Þ
where x = (x1,x2). The x1–x2 plane is chosen to lie along the mid-plane of the plate. The generalized dis-
placements (u,v,w,w1,w2) have the same physical meaning as in the first-order shear deformation theory
(Reissner, 1945, 1947; Mindlin, 1951), and three additional linear and quadratic terms of z associated with
w3, u1, and u2 are added to the expansion of the displacement field. Note that the displacement field in Eq.
(1.1) suggests that the transverse normal to the mid-plane will induce elongation or contraction (Kane and
Mindlin, 1956; Mindlin and Medick, 1959; Whitney and Sun, 1973). The linear strains associated with the
displacement field Eq. (1.1) are
e11 ¼ eð0Þ11 þ zeð1Þ11 þ z2eð2Þ11 ; e22 ¼ � � � ; c12 ¼ � � � ;
e33 ¼ eð0Þ33 ; c23 ¼ cð0Þ23 þ zcð1Þ23 ; c13 ¼ cð0Þ13 þ zcð1Þ13 ;

ð1:2Þ
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where
eð0Þ11 ¼ u;1; eð1Þ11 ¼ w1;1; eð2Þ11 ¼ u1;1; . . . ;

eð0Þ33 ¼ w3;

cð0Þ13 ¼ w1 þ w;1; cð1Þ13 ¼ 2u1 þ w3;1;

cð0Þ23 ¼ w2 þ w;2; cð1Þ23 ¼ 2u2 þ w3;2:
However, the discrepancies between the actual displacement field and that of the approximate plate theory
need to be corrected by making the following substitutions related to the thickness strains
j3e
ð0Þ
33 for eð0Þ33 ;

j1c
ð0Þ
13 for cð0Þ13 ; j4c

ð1Þ
13 for cð1Þ13 ;

j2c
ð0Þ
23 for cð0Þ23 ; j5c

ð1Þ
23 for cð1Þ23 ;

ð1:3Þ
where ji (i = 1–5) are the corrected coefficients similar to those introduced by Mindlin and Medick (1959).
Matching the cut-off frequencies of the following modes: (1) plate extensional modes and the first two sym-
metric modes of 3-D elasticity theory; (2) plate flexural mode with the second antisymmetric mode of 3-D
elasticity theory, the corrected coefficients are chosen as j1 ¼ j2 ¼ j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
p2=12

p
, j3 = j, j4 ¼ j5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
p2=15

p
(Whitney and Sun, 1973).

The constitutive equations for a linear elastic plate may be derived from the strain energy density in the
3-D elasticity theory with the corrections made by Eq. (1.3). For isotropic material the plate constitutive
equations are
N 11

N 22

N 12

8><>:
9>=>; ¼

kþ 2G k 0

k kþ 2G 0

0 0 G

264
375 h

u;1

v;2

u;2 þ v;1

8><>:
9>=>;þ h3

12

u1;1

u2;2

u1;2 þ u2;1

8><>:
9>=>;

0B@
1CAþ hjk

1

1

0

8><>:
9>=>;w3; ð1:3aÞ

N 33 ¼ h jkðu;1 þ v;2Þ þ j2ðkþ 2GÞw3

� �
þ h3

12
jkðu1;1 þ u2;2Þ; ð1:3bÞ

R2

R1

( )
¼ j2

4

h3

12
G

2u2 þ w3;2

2u1 þ w3;1

( )
; ð1:3cÞ

S11

S22

S12

8><>:
9>=>; ¼

kþ 2G k 0

k kþ 2G 0

0 0 G

264
375 h3

12

u;1

v;2

u;2 þ v;1

8><>:
9>=>;þ h5

80

u1;1

u2;2

u1;2 þ u2;1

8><>:
9>=>;

0B@
1CAþ j

h3

12
k

1

1

0

8><>:
9>=>;w3;

ð1:3dÞ

M11

M22

M12

8><>:
9>=>; ¼ h3

12

kþ 2G k 0
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0 0 G
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375 w1;1

w2;2

w1;2 þ w2;1

8><>:
9>=>;; ð1:3eÞ

Q2

Q1

� �
¼ j2hG

w;2 þ w2

w;1 þ w1

� �
; ð1:3fÞ
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where h is the thickness of the plate, k and G are the Lame�s constants of elasticity, and the stress resultants
are defined by
N ab

Mab

Sab

8><>:
9>=>; ¼

Z h=2

�h=2
rab

1

z

z2=2

8><>:
9>=>;dz;

Qa

Ra

( )
¼

Z h=2

�h=2
ra3

1

z

( )
dz; N 3 ¼

Z h=2

�h=2
r33 dz:
With the linear strain–displacement relation, the equations of motion of the higher-order plate theory can
be derived using the principle of virtual displacements or Hamilton�s principle (e.g., Washizu, 1982)
0 ¼
Z t2

t1

ðdU þ dV � dKÞdt; ð1:4Þ
where dU is the virtual strain energy, dV virtual work done by applied forces, and dK the virtual
kinetic energy. For an isotropic plate with mid-plane parallel to the plane z = 0, a set of equations of
motion is
N 11;1 þ N 12;2 þ q1 ¼ I0€uþ I2€u1;

N 12;1 þ N 22;2 þ q2 ¼ I0€vþ I2€u2;

R1;1 þ N 2;2 � N 3 þ m ¼ I2€w3;

S11;1 þ S12;2 � R1 þ n1 ¼
I2
2
€uþ I4

2
€u1;

S12;1 þ S22;2 � R2 þ n2 ¼
I2
2
€vþ I4

2
€u2;

ð1:5Þ

Q1;1 þ Q2;2 þ q ¼ I0€w;

M11;1 þM12;2 � Q1 þ m1 ¼ I2€w1;

M12;1 þM22;2 � Q2 þ m2 ¼ I2€w2;

ð1:6Þ
with a number of boundary conditions which must be specified on the plate edges; q1,q2, . . ., m1 and m2 are
the loads related to the surface tractions and defined by
qa

na

( )
¼ ½ra3ðh=2Þ � ra3ð�h=2Þ�

1

h2=4

( )
; ma ¼ ½ra3ðh=2Þ þ ra3ð�h=2Þ� h

2
;

q ¼ r33ðh=2Þ � r33ð�h=2Þ; m ¼ ½r33ðh=2Þ þ r33ð�h=2Þ� h
2
;

Ij ¼
Z h=2

�h=2
qðzÞj dz ðj ¼ 0; 2; 4Þ;
here a = 1,2 and q is the mass density.
The equations of motion in Eqs. (1.5) and (1.6) can be expressed in terms of generalized displacements by

substituting for the stress resultants from the constitutive equations, Eq. (1.3). The equations of motion and
the plate constitutive equations indicate that the extensional or symmetric waves with five degrees of free-
dom (u,v,w3,u1,u2) are decoupled from the flexural or antisymmetric waves with three degrees of freedom
(w,w1,w2). The symmetric and antisymmetric waves refer to the wave displacement profile symmetric and
antisymmetric with respect to the mid-plane of the plate (z = 0) respectively. In the following these two
wave motions are examined separately. For isotropic plates, the equations of motion take the form:
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Extensional wave
I0
q

ðkþ 2GÞu;11 þ ðkþ GÞv;12 þ Gu;22½ � þ I2
q

ðkþ 2GÞu1;11 þ ðkþ GÞu2;12 þ Gu1;22

� �
þ j

I0
q
kw3;1 þ q1 ¼ I0€uþ I2€u1 ð1:7aÞ

I0
q

Gv;11 þ ðkþ GÞu;21 þ ðkþ 2GÞv;22½ � þ I2
q

Gu2;11 þ ðkþ GÞu1;12 þ ðkþ 2GÞu2;22

� �
þ j

I0
q
kw3;2 þ q2 ¼ I0€vþ I2€u2; ð1:7bÞ

I2
q

j2
4Gðw3;11 þ w3;22Þ þ ð2j2

4G� jkÞðu1;1 þ u2;2Þ
� �

� I0
q
j kðu;1 þ v;2Þ þ jðkþ 2GÞw3½ � þ m ¼ I2€w3;

ð1:7cÞ

I2
2q

ðkþ 2GÞu;11 þ ðkþ GÞv;12 þ Gu;22 þ ðjk� 2j2
4GÞw3;1 � 4j2

4Gu1

� �
þ I4
2q

ðkþ 2GÞu1;11 þ ðkþ GÞu2;12 þ Gu1;22

� �
þ n1 ¼

I2
2
€uþ I4

2
€u1; ð1:7dÞ

I2
2q

Gv;11 þ ðkþ GÞu;12 þ ðkþ 2GÞv;22 þ ðjk� 2j2
4GÞw3;2 � 4j2

4Gu2

� �
þ I4
2q

Gu2;11 þ ðkþ GÞu1;12 þ ðkþ 2GÞu2;22

� �
þ n2 ¼

I2
2
€vþ I4

2
€u2: ð1:7eÞ
Flexural wave
I0
q
j2Gðw;11 þ w;22 þ w1;1 þ w2;2Þ þ q ¼ I0€w; ð1:8aÞ

I2
q

ðkþ 2GÞw1;11 þ ðkþ GÞw2;12 þ Gw1;22

� �
� I0

q
j2Gðw;1 þ w1Þ þ m1 ¼ I2€w1; ð1:8bÞ

I2
q

Gw2;11 þ ðkþ GÞw1;12 þ ðkþ 2GÞw2;22

� �
� I0

q
j2Gðw;2 þ w2Þ þ m2 ¼ I2€w2: ð1:8cÞ
In the following analysis it is convenient to make the variables dimensionless. To accomplish this step, we

may introduce a representative length scale h/2, a typical time scale, s = 0.5h/cT (cT ¼
ffiffiffiffiffiffiffiffiffi
G=q

p
is the velocity

of bulk transverse or shear vertical waves), and define the following nondimensional variables and quantities
x0i ¼
xi
h=2

; t0 ¼ t
s
; w0 ¼ w

h=2
;

u0 ¼ u
h=2

; v0 ¼ v
h=2

; u0
a ¼ uah=2;

q0a ¼
qa
2G

; n0a ¼
na

Gh2=20
; m0 ¼ m

Gh=3
;

q0 ¼ q
2G

; m0
a ¼

ma

Gh=3
;

k0j ¼ kjh=2; x0 ¼ xs;

ð1:9Þ
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where k0j, x
0 are the nondimensional wave number and frequency which will be used in the dispersion rela-

tion. According to the nondimensionalization, the phase velocity and group velocity are normalized by
cT ¼

ffiffiffiffiffiffiffiffiffi
G=q

p
.

In the sequel the bulk longitudinal wave velocity cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2GÞ=q

p
, plate velocity cP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=½ð1� m2Þq�

p
(Graff, 1991), and cR (Rayleigh wave velocity) are often used and their dimensionless representations nor-
malized by cT are
c0L ¼
ffiffiffi
a

p
; c0P ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
a� 1

a

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
2

1� m

r
; c0R ¼ cR

cT
; c0T ¼ 1;
where a = (cL/cT)
2 = 2 + k/G = 2(1 � m)/(1 � 2m) and m is Poisson�s ratio. Note that the nondimensional

quantities will be used in the following wave analysis and all the ‘‘primes’’ will be dropped except stated
otherwise. Then the dimensionless equations of motion can be expressed as

Extensional wave
au;11 þ ða� 1Þv;12 þ u;22 þ ½au1;11 þ ða� 1Þu2;12 þ u1;22�=3þ jða� 2Þw3;1 þ q1 ¼ €uþ €u1=3; ð1:10aÞ

v;11 þ ða� 1Þu;12 þ av;22 þ ½u2;11 þ ða� 1Þu1;12 þ au2;22�=3þ jða� 2Þw3;2 þ q2 ¼ €vþ €u2=3; ð1:10bÞ

j2
4ðw3;11 þ w3;22Þ � ½jða� 2Þ � 2j2

4�ðu1;1 þ u2;2Þ � 3jða� 2Þðu;1 þ v;2Þ � 3j2aw3 þ m ¼ €w3; ð1:10cÞ

au;11 þ ða� 1Þv;12 þ u;22 þ ½jða� 2Þ � 2j2
4�w3;1 � 4j2

4u1

� � 5
3
þ au1;11 þ ða� 1Þu2;12 þ u1;22 þ n1

¼ 5

3
€uþ €u1; ð1:10dÞ

v;11 þ ða� 1Þu;12 þ av;22 þ ½jða� 2Þ � 2j2
4�w3;2 � 4j2

4u2

� � 5
3
þ u2;11 þ ða� 1Þu1;12 þ au2;22 þ n2

¼ 5

3
€vþ €u2: ð1:10eÞ
Flexural wave
j2ðw;11 þ w;22 þ w1;1 þ w2;2Þ þ q ¼ €w; ð1:11aÞ

aw1;11 þ ða� 1Þw2;12 þ w1;22 � 3j2ðw;1 þ w1Þ þ m1 ¼ €w1; ð1:11bÞ

w2;11 þ ða� 1Þw1;12 þ aw2;22 � 3j2ðw;2 þ w2Þ þ m2 ¼ €w2: ð1:11cÞ
The dimensionless equations depend only on a single parameter a except loading parameters, and thus the
dispersion relation discussed below depends solely on the single parameter or Poisson�s ratio. This is one
advantage of this nondimensionalization.
2. Dimensionless dispersion relation

2.1. Extensional wave

To obtain dispersion relation we set all mechanical loads to zero and seek the plane wave elementary
solutions to Eq. (1.10) of the form
U ¼ a exp½iðk � x� xtÞ�; ð2:1Þ
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where U = [u,v,w3,u1,u2]
T, k = [k1,k2]

T is the wave vector, x is the frequency, and a is the complex-valued
vector (or wave amplitude). Substituting Eq. (2.1) into Eq. (1.10), we have the following generalized eigen-
value problem
ðK � x2MÞa ¼ 0; ð2:2Þ

where K and M are 5 · 5 matrices expressed by
K ¼

ak21 þ k22 ða� 1Þk1k2 �ijða� 2Þk1 ðak21 þ k22Þ=3 ða� 1Þk1k2=3
ða� 1Þk1k2 k21 þ ak22 �ijða� 2Þk2 ða� 1Þk1k2=3 ðk21 þ ak22Þ=3
3ijða� 2Þk1 3ijða� 2Þk2 j2

4ðk21 þ k22Þ þ 3aj2 i½jða� 2Þ � 2j2
4�k1 i½jða� 2Þ � 2j2

4�k2
5
3
ðak21 þ k22Þ 5

3
ða� 1Þk1k2 � 5

3
i½jða� 2Þ � 2j2

4�k1 ak21 þ k22 þ 20
3
j2
4 ða� 1Þk1k2

5
3
ða� 1Þk1k2 5

3
ðk21 þ ak22Þ � 5

3
i½jða� 2Þ � 2j2

4�k2 ða� 1Þk1k2 k21 þ ak22 þ 20
3
j2
4

26666664

37777775;

M ¼

1 0 0 1=3 0

0 1 0 0 1=3

0 0 1 0 0

5=3 0 0 1 0

0 5=3 0 0 1

26666664

37777775:
Setting the determinant of the coefficient matrix in Eq. (2.2) to zero for nontrivial solutions of a, k and x
have to be related by
jK � x2M j ¼ 0: ð2:3Þ

The eigenrelation Eq. (2.3) describes extensional dispersion relation of the isotropic plate. For a given k, the
relation provides five positive eigenvalues x2 or ten real solutions for the frequency x by numerical calcu-
lation. When k varies continuously, each pair of the solution represents a wave propagation mode. In fact,
the matrices K and M can be expressed as a Hermitian matrix and a real symmetric matrix, respectively, by
rewriting Eq. (1.10). The five pairs of real distinct propagation modes may be written as
x ¼ �W jðkÞ; W j > 0 ðj ¼ 1; 2; . . . ; 5Þ:

For a wave mode, x =W(k), the phase velocity c is given by
c ¼ W
k
k̂ ¼ ck̂;
where k̂ is the unit vector in the k direction, and the group velocity Cj is given by
Cj ¼
oW
okj

;

k can be expressed using the polar coordinates (k,/) as
k1 ¼ k cos/; k2 ¼ k sin/; k ¼ jkj;

where / is the direction of wave vector k (or direction of wave propagation) and k is the magnitude of k. In
general, x = W(k,/).

For isotropic platesx is independent of/. The group velocityC has a component oW/ok in the direction of
k and a component oW/ko/ = 0 perpendicular to k. Therefore, the group velocityC is parallel to k, or c, and
C ¼ Ck̂; C ¼ oW
ok

:
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Knowing the above fact, expanding the determinant in Eq. (2.3) leads to following wave modes:
x2 ¼ k2; ð2:4Þ

x2 ¼ k2 þ p2; ð2:5Þ

ak2 � x2 ðak2 � x2Þ=3 �ijða� 2Þk
5
3
ðak2 � x2Þ ak2 þ 20

3
j2
4 � x2 � 5

3
i½jða� 2Þ � 2j2

4�k

3ijða� 2Þk i½jða� 2Þ � 2j2
4�k j2

4k
2 þ 3aj2 � x2

��������
�������� ¼ 0
or
ak2 � x2 ðak2 � x2Þ=3 jða� 2Þk
5
3
ðak2 � x2Þ ak2 þ 20

3
j2
4 � x2 5

3
½jða� 2Þ � 2j2

4�k

3jða� 2Þk ½jða� 2Þ � 2j2
4�k j2

4k
2 þ 3aj2 � x2

��������
�������� ¼ 0: ð2:6Þ
Eq. (2.6) can be written in a polynomial form as
x6 þ a1x
4 þ a2x

2 þ a3 ¼ 0; ð2:7Þ

with
a1 ¼ �ð2aþ j2
4Þk2 � 3ðaj2 þ 5j2

4Þ;

a2 ¼ aðaþ 2j2
4Þk4 þ 3½ða2 þ 4a� 4Þj2 þ 5aj2

4�k2 þ 45aj2j2
4;

a3 ¼ �½a2j2
4k

4 þ 12j2ða� 1Þðak2 þ 15j2
4Þ�k2:

ð2:8Þ
Fig. 1(a) shows the group velocity C as a function of frequency x for each extensional wave mode for an
isotropic plate with v = 0.33. The five modes are labeled as T0, T1, T2, T3, and T4. The modes T3 and T4

represent the SH waves. The corresponding wave displacements do not have the transverse component
w and are perpendicular to the wave propagation direction. Because the displacements for the modes are
symmetric with respect to z = 0, they may be called symmetric SH waves.

In the following, each pair of wave mode shown in Eqs. (2.4)–(2.6) is described separately, mainly focus-
ing on their velocity limits in the low and high frequency ranges.

Wave mode T3: x
2 = k2

The wave mode T3 shown in Fig. 1 and is represented by Eq. (2.4). The mode is not dispersive, and the
phase and group velocities are:
c ¼ C ¼ cT:
Clearly this mode is shear waves. The eigenvector a corresponding to the mode, x2 = k2, shows that the
displacement perpendicular to k, uh = vcos/ � u sin/ is the only nonzero component in the circumferential
direction, thus SH waves. For example, let k = [k1,0]

T, the displacement vector [u,v,w] for the mode is in
the x2 direction.

Wave mode T4: x
2 = k2 + p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
c ¼ k2 þ p2

k
¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � p2
p ; C ¼ 1

c
:
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Fig. 1. Group velocity dispersion relation of extensional waves (m = 0.33): (a) five modes based on plate theory, (b) axisymmetric wave
modes of plate theory and 3-D elasticity.
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This SH mode possesses the following cut-off frequency xc which can be determined by setting k ! 0,
xc ¼
ffiffiffiffiffi
15

p
j4 ¼ p;
and the wave speeds approach the pure shear waves as k! 1

c;C � cT as k ! 1:
For the symmetric SH waves in a plate, the 3-D elasticity provides the following dispersion relation
explicitly
x2 ¼ k2 þ np
2

	 
2

; n ¼ 0; 2; 4; . . .
Hence, the modes T3 and T4 coincide with the first two of SH wave modes in 3-D elasticity.
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Wave modes T0, T1, T2

Eq. (2.6) yields three pairs of wave modes. For a wave mode x =W(k), the group velocity C can be cal-
culated from
C ¼ � a01W
4 þ a02W

2 þ a03
6W 5 þ 4a1W 3 þ 2a2W

ð2:9Þ
in which a0j ¼ daj=dk.
One mode, T0, has no cut-off frequency. As k ! 0 in the low frequency domain, the dispersion relation

for the mode T0 can be described by
x � 2k

ffiffiffiffiffiffiffiffiffiffiffi
a� 1

a

r
¼ cPk then c;C � cP: ð2:10Þ
Note that the normalized plate velocity cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1� mÞ

p
appears both in the classical plate theory and in

the 2-D elasticity theory (Lamb waves). Therefore, the low frequency limit of velocity of the mode T0 is the
plate velocity. The eigenvector a corresponding to the mode shows that the displacement field is dominated
by ur ¼ u cos/þ v sin/, as k! 0. The mode is essentially longitudinal waves, when k � 1.

Letting k = 0 in Eq. (2.6), the cut-off frequencies for other two modes, T1 and T2, are given respectively
by
xc ¼
ffiffiffiffiffi
3a

p
jð¼ p

ffiffiffi
a

p
=2Þ;

ffiffiffiffiffi
15

p
j4ð¼ pÞ: ð2:11Þ
Letting k ! 1 in the high frequency domain, the dispersion relation becomes
x2

k2
� j2

4; c;C � j4 ¼
pffiffiffiffiffi
15

p ; for T 0 mode;

x2

k2
� a; c;C � cL; for T 1 and T 2 modes:
The limit, p=
ffiffiffiffiffi
15

p
representing the normalized wave velocity of the mode T0 when k! 1, is less than 1

(being normalized by cT) and is close to cR (cR = 0.932 for m = 0.33) being the velocity of Rayleigh waves.
The velocities of the modes T1 and T2 approach cL which describes the longitudinal waves in a three-dimen-
sional elastic body.

2.2. Flexural waves

For the linear equations Eq. (1.11) with zero loads, the wave elementary solutions for the flexural wave
motion U = [w,w1,w2]

T take the basic form:
U ¼ a exp½iðk � x� xtÞ�: ð2:12Þ

From Eq. (1.11) and (2.12), we have the matrix equation
ðA� x2IÞa ¼ 0; ð2:13Þ

where
A ¼
j2k2 �ij2k1 �ij2k2
3ij2k1 ak21 þ k22 þ 3j2 ða� 1Þk1k2
3ij2k2 ða� 1Þk1k2 k21 þ ak22 þ 3j2

264
375:
The dispersion relation for Eq. (1.11) then follows from the condition that the determinant
jA� x2Ij ¼ 0: ð2:14Þ



4126 S. Yang, F.G. Yuan / International Journal of Solids and Structures 42 (2005) 4115–4153
Eq. (2.14) is a standard eigenvalue problem that can be expanded as
x6 þ a1x4 þ a2x2 þ a3 ¼ 0; ð2:15Þ
where aj are related to A. Eq. (2.15) can be further decomposed into two equations:
x2 � k2 � p2=4 ¼ 0; ð2:16Þ

x4 � ½ðaþ j2Þk2 þ 3j2�x2 þ aj2k4 ¼ 0: ð2:17Þ
Hence, there are three pairs of wave modes.
From Eqs. (2.16) and (2.17), the frequency x, phase velocity c and group velocity C can be expressed as
x2 ¼ k2 þ p2=4;
ðaþ j2Þk2 þ 3j2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� j2Þk2 þ 3j2

2

� �2
þ 3j4k2

s
; ð2:18Þ
then
c2 ¼ 1þ p2

12k2
;

ðaþ j2Þ þ 3j2k�2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� j2Þ þ 3j2k�2

2

� �2
þ 3j4k�2

s
; ð2:19Þ

C ¼ Ck̂; ð2:20Þ
where
C ¼ k=x; for the wave mode from Eq: (2.16); ð2:21Þ

C ¼ � 2aj2k2 � ðaþ j2Þx2

2x2 � ðaþ j2Þk2 � 3j2
c�1; for the modes from Eq: (2.17) ð2:22Þ
Fig. 2 shows the group velocity C as a function of the frequency x for each flexural wave mode for a plate
with m = 0.33. The three modes are labeled as B0, B1, and B2 in Fig. 2. The mode B2 represents the antisym-
metric SH wave. In the following the phase and group velocities in the low and high frequencies are
discussed.

Wave mode B2: x
2 = k2 + p2/4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
C ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2=4

q ¼ x2 � p2=4

x
; c ¼ 1

C
:

The mode possesses the following cut-off frequency xc as k! 0,
xc ¼
ffiffiffi
3

p
j ¼ p=2;
and the wave speeds approach the pure shear waves as k! 1

c;C � 1 as k ! 1:
The displacements for the mode indicate that the mode represents horizontal shear waves. For the antisym-
metric SH waves in a plate, the 3-D elasticity provides the following dispersion relation
x2 ¼ k2 þ np	 
2

; n ¼ 1; 3; 5; . . .

2
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Fig. 2. Group velocity dispersion relation of flexural waves (m = 0.33): (a) three modes based on plate theory, (b) axisymmetric wave
modes of plate theory and 3-D elasticity.
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Thus, the mode B2 is same as the first SH wave mode of 3-D elasticity. Note that the second SH mode can
be also be yielded by the plate theory, if more higher-order terms are included in the bending displacement
field.

Wave modes: B0 and B1

Eq. (2.17) yields two pairs of flexural wave modes: One mode B0 without cut-off frequency and the other
B1 with cut-off frequency. For the mode B0, x approaches zero as k! 0, and the dispersion relation
becomes
x2 � ak4

3
¼ 2ð1� mÞ

3ð1� 2mÞ k
4 as k ! 0 ð2:23Þ



4128 S. Yang, F.G. Yuan / International Journal of Solids and Structures 42 (2005) 4115–4153
or
c �
ffiffiffiffiffiffiffiffi
a=3

p
k ¼ ða=3Þ1=4

ffiffiffiffi
x

p
; C � 2c as k ! 0:
Note that in the low-frequency region the dispersion relation does not approach that for classical plate the-
ory (x2 = ak4 is the dispersion relation of flexural waves for classical plate theory).

Letting k = 0 in Eq. (2.17), the cut-off frequency for the B1 mode is given by
xc ¼
ffiffiffi
3

p
j ¼ p=2:
Letting k! 1, the dispersion relation becomes
x2

k2
� j2; c;C � j as k ! 1 for B0 mode; ð2:24Þ

x2

k2
� a; c;C � cL as k ! 1 for B1 mode: ð2:25Þ
The velocity of the mode B0 in the high frequency domain, C � j = 0.907, while C � cR = 0.932 for
m = 0.33 for A0 mode of 3-D elasticity solution. The limit of velocity of the higher-order mode B1 is cL.
3. Axisymmetric extensional waves using higher-order plate theory

When an infinite plate is subjected to axisymmetric loads, then all variables are only functions of the
radial coordinate r and time t based on the plate theory. The behavior based on the classical plate theory
is described in Appendix A. In cylindrical coordinates the plate displacement field for the axisymmetric
deformation is
urðr; z; tÞ ¼ uðr; tÞ þ zwðr; tÞ þ z2uðr; tÞ;
u3ðr; z; tÞ ¼ wðr; tÞ þ zw3ðr; tÞ;

ð3:1Þ
where (ur,u3) are the radial and transverse displacements, respectively, w is the rotation of a transverse nor-
mal about the h-direction. Since the in-plane extensional wave motion (u,u,w3) is uncoupled from flexural
wave motion (w,w) in the linear case, the two types of waves will be discussed separately in this and the
following sections.

With the linear strain–displacement relation, the equations of motion of extensional waves can be ob-
tained using the Hamilton�s principle, that is,
1

r
o

or
ðrNrÞ �

N h

r
þ qr ¼ I0€uþ I2€u;

1

r
o

or
ðrSrÞ �

Sh

r
� Rr þ nr ¼

I2
2
€uþ I4

2
€u;

1

r
o

or
ðrRrÞ � Nz þ m ¼ I2€w3:

ð3:2Þ
Rewriting the equations of motion in terms of displacements
1

q
ðkþ 2GÞ r2 � 1

r2


 �
ðI0uþ I2uÞ þ

I0
q
jk

ow3

or
þ qr ¼ I0€uþ I2€u;

1

q
ðkþ 2GÞ r2 � 1

r2


 �
ðI2uþ I4uÞ þ

I2
q

ðjk� 2j2
4GÞ

ow3

or
� 4j2

4Gu
� �

þ nr ¼ I2€uþ I4€u;

I2
q

j2
4Gr2w3 þ ð2j2

4G� jkÞ 1
r
o

or
ðruÞ

� �
� I0

q
jk

1

r
o

or
ðruÞ þ j2ðkþ 2GÞw3

� �
þ m ¼ I2€w3;

ð3:3Þ
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and using the nondimensional variables and quantities defined by Eq. (1.9), the dimensionless equations of
motion become
a r2 � 1

r2


 �
uþ 1

3
u


 �
þ ða� 2Þj ow3

or
þ qr ¼ €uþ 1

3
€u;

a r2 � 1

r2


 �
5

3
uþ u


 �
þ 5

3
½jða� 2Þ � 2j2

4�
ow3

or
� 20

3
j2
4uþ nr ¼

5

3
€uþ €u;

j2
4r2w3 þ ½2j2

4 � jða� 2Þ� 1
r
o

or
ðruÞ � 3jða� 2Þ 1

r
o

or
ðruÞ � 3j2aw3 þ m ¼ €w3;

ð3:4Þ
where r2 ¼ 1
r

o
or ðr o

orÞ. The extensional wave in a large plate may be solved by using the Laplace and the

Hankel transformations.
Suppose that a distributed and transverse force is suddenly applied on a surface of plate. Then m 5 0,

q 5 0. In this case, m yields the extensional waves, and q produces the flexural waves in plates. It is worth
noting that, according to the classical plate theory and the Mindlin first-order plate theory, there is no
extensional deformation associated with the transverse load. However, the higher-order plate theory which
considers the terms, w3 and u, can account for the extensional motion in plates. For example, if an impulse
transverse load q+ is applied on the top surface of the plate, we have m = 3q+ via nondimensionalization.

For other loads the problem can be treated in a similar manner. Consider that m is the only nonzero load
and the initial conditions are zero. Applying the Laplace and the first-order Hankel transforms to the first
two equations in Eq. (3.4), applying the Laplace and the zero-order Hankel transform to the third equation
in Eq. (3.4), and defining the following transformed variables:
~�uðk; sÞ ¼
Z 1

0

expð�stÞdt
Z 1

0

rJ 1ðkrÞuðr; tÞdr;

~�uðk; sÞ ¼
Z 1

0

expð�stÞdt
Z 1

0

rJ 1ðkrÞuðr; tÞdr;

~�w3ðk; sÞ ¼
Z 1

0

expð�stÞdt
Z 1

0

rJ 0ðkrÞw3ðr; tÞdr;

~�mðk; sÞ ¼
Z 1

0

expð�stÞdt
Z 1

0

rJ 0ðkrÞmðr; tÞdr;

ð3:5Þ
where s is the Laplace transform parameter, k the Hankel transform parameter, ~u; �u; ~�u; . . . are the Hankel
transform, Laplace transform, and the joint Hankel and Laplace transform of function u, respectively, . . .,
Jn(kr) is the Bessel function of order n. Then Eq. (3.4) can be transformed into
ðTþ s2MÞeU ¼ ~�mI3; ð3:6Þ
where eU ¼ ½e�u; e�u; e�w3�
T, I3 = [0,0,1]T,
T ¼
ak2 ak2=3 jða� 2Þk
5
3
ak2 ak2 þ 20

3
j2
4

5
3
½jða� 2Þ � 2j2

4�k
3jða� 2Þk ½jða� 2Þ � 2j2

4�k j2
4k

2 þ 3aj2

264
375; M ¼

1 1=3 0

5=3 1 0

0 0 1

264
375: ð3:7Þ
Eq. (3.7) is reached by employing the following operational properties of the Hankel transform (Debnath,
1995)
Z 1

0

rJ 0ðkrÞr2f ðrÞdr ¼ �k2~f 0ðkÞ; the zero-order Hankel transform;
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Z 1

0

rJ 1ðkrÞ r2 � 1

r2


 �
f ðrÞdr ¼ �k2~f 1ðkÞ; the first-order Hankel transform;

H 0

1

r
d

dr
½rf ðrÞ�

� �
¼ kH 1ff ðrÞg � k~f 1ðkÞ; H 1ff 0ðrÞg ¼ �kH 0ff ðrÞg ¼ �k~f 0ðkÞ
provided rf(r) ! 0 as r ! 0 and 1, where Hj is the Hankel transform operator and the subscript j is the
transform order.

The solution of Eq. (3.6) is
eU ¼ ðTþ s2MÞ�1 ~�mI3 ¼
adjðTþ s2MÞ
jTþ s2Mj

~�mI3: ð3:8Þ
Note that the denominator can be expressed as
jTþ s2Mj ¼ ðs2 þ s21Þðs2 þ s22Þðs2 þ s23Þ;
where s21, s
2
2, and s23 are the roots of the equation, jT + s2Mj = 0.

By introducing the substitution s = ix, the equation jT + s2Mj = 0 becomes
jT� x2Mj ¼ 0: ð3:9Þ
Eq. (3.9) is recognized as the dispersion relation presented earlier by Eq. (2.6). Thus, here x represents the
frequency and k, the Hankel transform variable, represents the wave number. The eigenvalues x2 in Eq.
(3.9) may be expressed in the form
x2 ¼ W 2
1ðkÞ;W 2

2ðkÞ;W 2
2ðkÞ:
Therefore, there are three extensional wave modes, T0, T1, and T2, in a plate under axisymmetric deforma-
tion according to the higher-order plate theory. The dispersion relation is shown by the solid lines in Fig.
1(a), where the group velocity C varies with frequency x.

Since s21 ¼ �W 2
1, s

2
2 ¼ �W 2

2, s
2
3 ¼ �W 2

3, Eq. (3.8) can be rewritten as
eU ¼ adjðT þ s2MÞ
ðs2 þ W 2

1Þðs2 þ W 2
2Þðs2 þ W 2

3Þ
~�mI3: ð3:10aÞ
The next step is to take the inverse Laplace transform. In order to successfully determine the inverse La-
place transform to Eq. (3.10a), eUðk; sÞ needs to be expressed as the sum of terms 1=ðs2 þ W 2

j Þ and/or
s=ðs2 þ W 2

j Þ.
Decomposition of eUðk; sÞ in Eq. (3.10a) gives
eU ¼ AT

ðs2 þ W 2
1Þ

�1

ðs2 þ W 2
2Þ

�1

ðs2 þ W 2
3Þ

�1

8><>:
9>=>;~�m; ð3:10bÞ
where AT(k) can be determined from Eqs. (3.10a) and (3.10b), and may be expressed in the form
AT ¼ DTX
�1; ð3:11Þ

DT ¼
0 m12T 23 � T 13 T 12T 23 � T 22T 13

0 m21T 13 � T 23 T 21T 13 � T 11T 23

1� m12m21 T 11 þ T 22 � m12T 21 � m21T 12 T 11T 22 � T 12T 21

264
375;
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X ¼
1 W 2

2 þ W 2
3 W 2

2W
2
3

1 W 2
3 þ W 2

1 W 2
3W

2
1

1 W 2
1 þ W 2

2 W 2
1W

2
2

264
375;
where Tij and mij are the elements of the T and M matrices in Eq. (3.9) respectively.
Applying the inverse Laplace transform to Eq. (3.10b) yields
eUðk; tÞ ¼ AT

Z t

0

W �1
1 sinW 1ðt � nÞ

W �1
2 sinW 2ðt � nÞ

W �1
3 sinW 3ðt � nÞ

8><>:
9>=>;~mðk; nÞdn: ð3:12Þ
Eq. (3.12) is derived by using the inverse Laplace transform (Debnath, 1995)
L�1 1

s2 þ W 2
i

� �
¼ sinW it

W i
and the convolution theorem
L�1 1

s2 þ W 2
i

~�qðk; sÞ
� �

¼
Z t

0

sinW iðt � nÞ
W i

~qðk; nÞdn:
The inverse Hankel transform of eU in Eq. (3.12) leads to
u

u

w3

8><>:
9>=>; ¼

Z 1

0

kdiag½J 1ðkrÞ; J 1ðkrÞ; J 0ðkrÞ�ATHðt; kÞdk; ð3:13Þ

H ¼ ½h1; h2; h3�T; hiðt; kÞ ¼ W �1
i

Z t

0

sinW iðt � nÞ~mðk; nÞdn; i ¼ 1; 2; 3: ð3:14Þ
In general, a point load applied at the center of the plate may be written as
m ¼ m0

2p
dðrÞ
r

f ðtÞ;
here m0 is the magnitude of the applied load. Then
hiðt; kÞ ¼
m0

2pW i

Z t

0

f ðnÞ sinW iðt � nÞdn; i ¼ 1; 2; 3:
The expressions for hi(t,k) for some specific point loads with m0 = 1 are given below

(a) Pure impulse load
Consider a pure impulse point load, f(t) = d(t), where d(t) is a Dirac delta function, then
hiðt; kÞ ¼
sinW it
2pW i

: ð3:15Þ
Eq. (3.13) becomes
uðr; tÞ
uðr; tÞ
w3ðr; tÞ

8><>:
9>=>; ¼ 1

2p

Z 1

0

kdiag½J 1ðkrÞ; J 1ðkrÞ; J 0ðkrÞ�AT

W �1
1 sinW 1t

W �1
2 sinW 2t

W �1
3 sinW 3t

8><>:
9>=>;dk: ð3:16Þ
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If the impulse load is located at r 0 = (r 0,h 0), f(t) = d(t � t 0), from Eq. (3.13) and the transformation of the
displacements, the solutions at r = (r,h) may be rewritten as
urðr; t; r0; t0Þ ¼ u0 cosðh0 � hÞ; uhðr; t; r0; t0Þ ¼ u0 sinðh0 � hÞ;

urðr; t; r0; t0Þ ¼ u0 cosðh0 � hÞ; uhðr; t; r0; t0Þ ¼ u0 sinðh0 � hÞ;

w3ðr; t; r0; t0Þ ¼ w0
3;

ð3:17Þ
with
u0

u0

w0
3

8>><>>:
9>>=>>; ¼ 1

2p

Z 1

0

k

J 1ðkjr� r0jÞ 0 0

0 J 1ðkjr� r0jÞ 0

0 0 J 0ðkjr� r0jÞ

2664
3775AT

W �1
1 sinW 1ðt � t0Þ

W �1
2 sinW 2ðt � t0Þ

W �1
3 sinW 3ðt � t0Þ

8>><>>:
9>>=>>;dk: ð3:18Þ
These solutions are the Green�s functions for extensional waves describing the response at r and t to a unit
impulse load m applied at r 0 and t = t 0.

(b) N-peak signal
Assume a point load at r = 0 can be described by a narrow-band N-peak signal, i.e.,
f ðtÞ ¼ HðtÞ � H t � 2pN
p


 �� �
1� cos

pt
N

	 

sin pt ðN ¼ 3; 5; 7; . . .Þ;
where p is the central frequency and H(t) is the Heaviside unit step function. Obviously, the loading dura-
tion is T = 2pN/p.

From Eq. (3.14), hi for t > T is given by
hi ¼
1

2pW i

p

p2 � W 2
i

� 1

2

p1
p21 � W 2

i

þ p2
p22 � W 2

i


 �� �
½ð1� cosW iT Þ sinW it þ sinW iT cosW it�;

p1 ¼ pðN � 1Þ=N ; p2 ¼ pðN þ 1Þ=N ;
(c) Step-function loading
f ðtÞ ¼ HðtÞ:

Eq. (3.14) leads to
hi ¼
ð1� cosW itÞ

2pW 2
i

:

(d) Rectangular impulse
f ðtÞ ¼ HðtÞ � Hðt � T Þ:
Considering t > T, Eq. (3.14) gives
hi ¼
sinW iT=2

2pW 2
i

sinW iðt � T=2Þ:
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(e) Half-sine-wave impulse
f ðtÞ ¼ ½HðtÞ � Hðt � T Þ� sin pt;

where T is the duration of load, T = p/p.
hi ¼
p cosW iT=2

pW iðp2 � W 2
i Þ

sinW iðt � T=2Þ; t > T :
With the expressions hi(t,k) for different loads given above, Eq. (3.13) indicates that the inverse Hankel trans-
form in 0 < k <1 for the pure impulse load converges slower than those for other loads if numerical evalu-
ation is employed. This can be seen from the following observation. As k! 1, the integrand in Eq. (3.13)
approaches k�c (c > 0) for any load, and the value of c for f(t) = d(t) is minimum among all the loads.

3.1. Asymptotic expansion

These integrals in Eq. (3.13) represent exact solutions for u, u, and w3 at any r and t. It is usually unlikely
to evaluate them exactly. The alternatives are numerical evaluation, or an approximate analytical evalua-
tion. However, the numerical evaluation is not convenient to describe the physical features of the wave mo-
tions. In order to resolve this difficulty, it is necessary and useful to resort to asymptotic methods. It will be
sufficient for determination of the basic features of the wave motions to evaluate Eq. (3.13) asymptotically
for large times and large distances with r/t held fixed. Replacing J0(kr) and J1(kr) by their asymptotic
expansions for kr ! 1 in Eq. (3.13),
J 0ðkrÞ �
ffiffiffiffiffiffiffi
2

pkr

r
cosðkr � p=4Þ;

J 1ðkrÞ �
ffiffiffiffiffiffiffi
2

pkr

r
sinðkr � p=4Þ;

ð3:19Þ
and applying the stationary phase to the integrals for large values of t (Stamnes, 1986; Jeffreys and Jefferys,
1956), the asymptotic expansion can be obtained. For example, for the pure impulsive point load Eq. (3.13)
becomes
uðr; tÞ � 1

2p
ffiffiffiffiffiffiffi
2pr

p
X
i

Z 1

0

F 1iðkÞRefexp½iðkr � W it � p=4Þ�gdk;

uðr; tÞ � 1

2p
ffiffiffiffiffiffiffi
2pr

p
X
i

Z 1

0

F 2iðkÞRefexp½iðkr � W it � p=4Þ�gdk;

w3ðr; tÞ �
1

2p
ffiffiffiffiffiffiffi
2pr

p
X
i

Z 1

0

F 3iðkÞRefexp½iðkr � W it þ p=4Þ�gdk;

ð3:20Þ
as kr ! 1, where the expressions for Fij can be readily obtained from Eq. (3.13) after matrix manipulation.
Further, for large values of t the stationary phase method gives
uðr; tÞ � 1

2p
ffiffiffiffi
rt

p Re
X
i

X
stationary
points k

F 1iðkÞffiffiffiffiffiffiffiffiffiffi
jW 00

i j
p exp i½kr � W it � pð1þ sgnW 00

i Þ=4�;

uðr; tÞ � 1

2p
ffiffiffiffi
rt

p Re
X
i

X
stationary
points k

F 2iðkÞffiffiffiffiffiffiffiffiffiffi
jW 00

i j
p exp i½kr � W it � pð1þ sgnW 00

i Þ=4�;

u3ðr; tÞ �
1

2p
ffiffiffiffi
rt

p Re
X
i

X
stationary
points k

F 3iðkÞffiffiffiffiffiffiffiffiffiffi
jW 00

i j
p exp i½kr � W it þ pð1� sgnW 00

i Þ=4�;

ð3:21Þ
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where sgn stands for sign function and k = k(r, t) is the stationary point which is root of the equations
W 0
iðkÞ ¼

r
t
; k > 0 and

r
t
> 0 ði ¼ 1; 2; 3Þ: ð3:22Þ
Eq. (3.21) indicates that the amplitude is proportional to (rt)�1/2. The approximation provided by the sta-
tionary phase breaks down near points where W 00

i ¼ 0.
In this case, a proper asymptotic approximation can be constructed by expanding the exponent in Eq.

(3.20) around k0 where W 00
i ðk0Þ ¼ 0, and retaining up to third-order terms. Then the transitional Airy

approximation in the region can be obtained (Stamnes, 1986; Achenbach, 1984). Again, for the pure impul-
sive point load the asymptotic solutions are
uðr; tÞ � Reffiffiffiffiffiffiffi
2pr

p
ðt=2Þ1=3

X
i

X
stationary
points k

F 1iðkÞ
AiðziÞ
jW 000

i j
1=3

exp½iðkr � W it � p=4Þ�;

uðr; tÞ � Reffiffiffiffiffiffiffi
2pr

p
ðt=2Þ1=3

X
i

X
stationary
points k

F 2iðkÞ
AiðziÞ
jW 000

i j
1=3

exp½iðkr � W it � p=4Þ�;

w3ðr; tÞ �
Reffiffiffiffiffiffiffi

2pr
p

ðt=2Þ1=3
X
i

X
stationary
points k

F 3iðkÞ
AiðziÞ
jW 000

i j
1=3

exp½iðkr � W it þ p=4Þ�;

ð3:23Þ
where
zi ¼ sgnðW 000
i Þ

W 0
it � x

ðjW 000
i jt=2Þ

1=3
Ai(x) is the Airy function, and its integral representation is
AiðxÞ ¼ 1

p

Z 1

0

cos xsþ 1

3
s3


 �
ds
In the Airy expansion, k should be understood that k = k0, the stationary point of group velocity. Eq. (3.23)
shows that the wave amplitude varies as t�1/3r�1/2. Hence, the predominant contribution comes from the
neighborhood of k0. For instance, the wave mode T0 indicates
W ðkÞ � cPk � 1k3; W 00ðkÞ � 0; as k ! 0;
here cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1� mÞ

p
is the normalized plate velocity, 1 = constant > 0, the stationary phase is not valid in

the neighborhood of k = 0. However, the correct expansion in the transition region can be constructed by
the Airy approximation. The asymptotic results show that the contribution from the mode decays exponen-
tially ahead of the curve r = cPt and becomes oscillatory behind the curve. The asymptotic solutions for
other loads can be obtained in a similar manner.

As k! 1, W 0(k) or group velocity reaches plateau, and W
00
(k),W

000
(k), . . ., approach zero for all the

modes. In this case, asymptotic expansions based on the stationary phase and the Airy approximation
are invalid. However, the integral over the interval (kf,1) (kf � 1), r�1=2

R1
kf

F ðkÞ exp½iðkr � WtÞ�dk, can
be simplified significantly. It represents rapid oscillations trend to cancel contributions to the entire integral,
and its magnitude is of order smaller than (rt)�1/2, if the asymptotic expansion ofW(k) is applied. This con-
clusion can also be used to estimate the error incurred by replacing the interval (0,1) with (0,kf) in the
numerical calculation.
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4. Axisymmetric flexural waves using higher-order plate theory

We begin with the following flexural displacement field for the Reissner–Mindlin plate theory,
urðr; z; tÞ ¼ zwðr; tÞ;
u3ðr; z; tÞ ¼ wðr; tÞ:

ð4:1Þ
The governing equations without nondimensionalization are given by
1

r
o

or
ðrQrÞ þ q ¼ I0€w;

1

r
o

or
ðrMrÞ �Mh

� �
� Qr ¼ I2€w:

ð4:2Þ
The plate constitutive relations are
Mr ¼ ðkþ 2GÞ ow
or

þ k
w
r

� �
h3

12
;

Mh ¼ k
ow
or

þ ðkþ 2GÞw
r

� �
h3

12
;

Qr ¼ j2G wþ ow
or


 �
h:

ð4:3Þ
The dimensionless displacement equations of motion for flexural waves in an isotropic plate with transverse
load q(x, t) and zero initial conditions take the form (note the nondimensional quantities are shown by Eq.
(1.11), and the ‘‘primes’’ on the dimensionless quantities are dropped)
€w� j2r2w� j2

r
o

or
ðrwÞ ¼ q; t > 0;

€wþ 3j2 wþ ow
or


 �
� a r2 � 1

r2


 �
w ¼ 0;

ð4:4Þ

U ¼ oU

ot
¼ 0 at t ¼ 0; ð4:5Þ
where r2 ¼ 1
r

o
or r o

or

� �
, U = [w,w]T.

In a similar approach to the extensional waves, the flexural wave in the plate can be solved by using the
Laplace and the Hankel transformations. Applying the Laplace and the zero-order Hankel transform to the
first equation in Eq. (4.4), while applying the Laplace and the first-order Hankel transform to the second
equation in Eq. (4.4), and then defining the following transformed variables
~�wðk; sÞ ¼
Z 1

0

expð�stÞdt
Z 1

0

rJ 0ðkrÞwðr; tÞdr;

e�wðk; sÞ ¼ Z 1

0

expð�stÞdt
Z 1

0

rJ 1ðkrÞwðr; tÞdr;

~�qðk; sÞ ¼
Z 1

0

expð�stÞdt
Z 1

0

rJ 0ðkrÞqðr; tÞdr:

ð4:6Þ
Eqs. (4.4) and (4.5) are transformed into
ðBþ s2IÞeU ¼ ~�qI1 ð4:7Þ
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where eU ¼ ½~�w; e�w�T, I1 = [1,0]T,
B ¼ j2k2 �j2k

�3j2k ak2 þ 3j2

" #
: ð4:8Þ
The solution of Eq. (4.7) is
eU ¼ ðBþ s2IÞ�1~�qI1
or
eU ¼ adjðBþ s2IÞ
jBþ s2Ij

~�qI1 ¼
adjðBþ s2IÞ

ðs2 þ s21Þðs2 þ s22Þ
~�qI1; ð4:9Þ
where s21 and s22 are the roots of the equation, jB + s2Ij = 0. Letting s = ix, the equation jB + s2Ij = 0
becomes
jB� x2Ij ¼ 0: ð4:10Þ

Eq. (4.10) is identical to the dispersion relation of the plate given by Eq. (2.17). Hence, x represents the
frequency, and k, the Hankel transform variable, represents the wave number here. The eigenvalues x2

in Eq. (4.10) may be expressed in the form
x2 ¼ W 2
1ðkÞ;W 2

2ðkÞ:

The expressions for W 2

j are given by the last two equations in Eq. (2.18).
Eq. (4.10) indicates that there are two flexural wave modes, B0 and B1, in a plate subjected to axisym-

metric deformation based on the plate theory. The dispersion relation is shown by the solid lines in Fig.
2(b), where the group velocity C varies as a function of the frequency x.

With s21 ¼ �W 2
1, s

2
2 ¼ �W 2

2, decomposition of eUðk; sÞ in Eq. (4.9) gives
eU ¼ adjðBþ s2IÞ
ðs2 þ W 2

1Þðs2 þ W 2
2Þ
I1~�q ¼ Ab

ðs2 þ W 2
1Þ

�1

ðs2 þ W 2
2Þ

�1

( )
~�q ð4:11Þ
or
~�w ¼ a11
s2 þ W 2

1

þ a12
s2 þ W 2

2


 �
~�q;

e�w ¼ a21
s2 þ W 2

1

þ a22
s2 þ W 2

2


 �
~�q;
where Ab (k,Wj) = [aij] can be determined from Eq. (4.11) and may be expressed in the following compact
form
Ab ¼ CfX
�1 ð4:12Þ

Cf ¼ 1 ak2 þ 3j2

0 3j2k

" #
; ð4:13Þ

X ¼ 1 W 2
2

1 W 2
1

" #
; ð4:14Þ
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Ab ¼
1

W 2
1 � W 2

2

W 2
1 � ak2 � 3j2 �W 2

2 þ ak2 þ 3j2

�3j2k 3j2k

� �
:

Applying the inverse Laplace transform to Eq. (4.11) gives
eUðk; tÞ ¼ L�1 Ab
ðs2 þ W 2

1Þ
�1

ðs2 þ W 2
2Þ

�1

� �
~�qðk; sÞ

� �
¼ Ab

Z t

0

W �1
1 sinW 1ðt � nÞ

W �1
2 sinW 2ðt � nÞ

� �
~qðk; nÞdn:
The inverse Hankel transform of Eq. (4.16) gives
Uðr; tÞ ¼
Z 1

0

kdiag½J 0ðkrÞ; J 1ðkrÞ�Ab dk
Z t

0

W �1
1 sinW 1ðt � nÞ

W �1
2 sinW 2ðt � nÞ

( )
~qðk; nÞdn: ð4:15Þ
If the load q(r, t) can be separated as q(r, t) = p(r)f(t), then
�q ¼ pðrÞ�f ðsÞ; ~�q ¼ ~pðkÞ�f ðsÞ;

Uðr; tÞ ¼
Z 1

0

k~pðkÞdiag½J 0ðkrÞ; J 1ðkrÞ�Ab dk
Z t

0

W �1
1 sinW 1ðt � nÞ

W �1
2 sinW 2ðt � nÞ

( )
f ðnÞdn: ð4:16Þ
For a point load concentrated at (0,0), q(r, t) can be expressed as q ¼ Q0

2p
dðrÞ
r f ðtÞ, where Q0 is the magnitude

of the load and d(r) is the Dirac delta function. Since ~pðkÞ ¼
R1
0

rJ 0ðkrÞpðrÞdr ¼ 1
2p, Eq. (4.16) further re-

duces to
Uðr; tÞ ¼
Z 1

0

kdiag½J 0ðkrÞ; J 1ðkrÞ�AbHðt; kÞdk; ð4:17Þ
where
Hðt; kÞ ¼ ½h1;h2�T; hiðt; kÞ ¼
Q0

2pW i

Z t

0

f ðnÞ sinW iðt � nÞdn; i ¼ 1; 2:
For the point loads with simple time functions f(t), the expressions for hj(t,k) are exactly the same as those
given in the section of extensional waves.

In general, Eqs. (4.15)–(4.17), can be used to evaluate the flexural wave solution for any form of dynamic
loading; however, for arbitrary loadings the evaluation must be performed numerically. For impulsive
loads which can be expressed by simple analytical functions, closed form solutions of the equations of mo-
tion can be obtained by using Eq. (4.15), or (4.16), or (4.17).

Using asymptotic methods, it will be useful for determination of the basic features of the wave motions
to evaluate Eq. (4.17) asymptotically for large times and large distances with r/t held fixed. Using the
expansion of the Bessel functions and the stationary phase method, the asymptotic expansion of Eq.
(4.17) can be obtained in a similar manner as the extensional waves.

For the pure impulse load, f(t) = d(t), the solution is given below:
wðr; tÞ
wðr; tÞ

� �
¼ 1

2p

Z 1

0

kdiag½J 0ðkrÞ; J 1ðkrÞ�Ab
W �1

1 sinW 1t

W �1
2 sinW 2t

( )
dk ð4:18Þ
If the pure impulse load is located at r 0 = (r 0,h 0), f(t) = d(t � t 0), with Eq. (4.18), the solution at r = (r,h)
may be rewritten as
wðr; t; r0; t0Þ
wrðr; t; r0; t0Þ
w ðr; t; r0; t0Þ

24 35 ¼
1 0

0 cosðh0 � hÞ
0 sinðh0 � hÞ

24 35 w0

w0

� �
ð4:19Þ
h
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with
w0ðr; tÞ
w0ðr; tÞ

� �
¼

Z 1

0

k
J 0ðkjr� r0jÞ 0

0 J 1ðkjr� r0jÞ

� �
Ab

W �1
1 sinW 1ðt � t0Þ

W �1
2 sinW 2ðt � t0Þ

( )
dk: ð4:20Þ
The solution is the Green�s functions for flexural waves describing the response at r and t to a unit pure
impulse load q applied at r 0 and t = t 0.
5. Exact axisymmetric wave solutions of 3-D elasticity theory

For comparison with the higher-order plate theory, the wave behavior under axisymmetric deformation
in an isotropic plate provided by ‘‘exact’’ three-dimensional elasticity is derived below. The displacement
equations of motion in cylindrical coordinates are
ðkþ 2GÞ r2u� u
r2

	 

þ G

o2u
oz2

þ ðkþ GÞ o
2w

oroz
þ F r ¼ q€u;

Gr2wþ ðkþ 2GÞ o
2w
oz2

þ ðkþ GÞ 1
r
o
2ðruÞ
ozor

þ F z ¼ q€w;

ð5:1Þ
where u and w are the displacement components in the r and z directions, respectively, Fr, and Fz the body
forces. Introducing the length scale h/2 and time scale h/(2cT), and defining the dimensionless variables
r0 ¼ r
h=2

; z0 ¼ z
h=2

; t0 ¼ t
h=ð2cTÞ

; u0 ¼ u
h=2

; w0 ¼ w
h=2

; F 0
i ¼

F i

2G=h
:

The dimensionless equations of motion follow from Eq. (5.1), dropping the primes, as
a r2u� u
r2

	 

þ o2u

oz2
þ ða� 1Þ o

2w
oroz

þ F r ¼ €u;

r2wþ a
o
2w
oz2

þ ða� 1Þ 1
r

o
2

oroz
ðruÞ þ F z ¼ €w;

ð5:2Þ
with the traction-free boundary conditions, rzz = srz = 0, on the two plate surfaces, which can be written as
aw;z þ ða� 2Þður þ u;rÞ ¼ 0

u;z þ w;r ¼ 0
at z ¼ �1: ð5:3Þ
The solution of Eq. (5.2) is the sum of a particular solution and the general solution of the associated homo-
geneous equation. The two solutions will be discussed separately.

(A) F�[Fr,Fz]
T = 0

To investigate the axisymmetric wave propagation in the plate without body forces, we introduce the
Fourier transform with respect to t and the Hankel transform with respect to r defined by
~̂uðk; z;xÞ ¼
Z 1

�1
e�ixt dt

Z 1

0

rJ 1ðkrÞuðr; z; tÞdr;

~̂wðk; z;xÞ ¼
Z 1

�1
e�ixt dt

Z 1

0

rJ 0ðkrÞwðr; z; tÞdr;
ð5:4Þ
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where ~u; û; ~̂u; . . . are the Hankel transform, Fourier transform, and the joint Hankel and Fourier transform
of function u, respectively, . . . Then Eqs. (5.2) and (5.3) reduce to the following ordinary differentia
equations
d2~̂u
dz2

þ ðx2 � ak2Þ~̂u� ða� 1Þk d ~̂w
dz

¼ 0;

a
d2 ~̂w
dz2

þ ðx2 � k2Þ ~̂wþ ða� 1Þk d~̂u
dz

¼ 0

ð5:5Þ
with
a
d ~̂w
dz

þ ða� 2Þk~̂u ¼ 0

d~̂u
dz

� k ~̂w ¼ 0

at z ¼ �1: ð5:6Þ
Eq. (5.5) yields
~̂u ¼ a1 cos pzþ a2 sin pzþ a3 cos qzþ a4 sin qz;

~̂w ¼ p
k
ð�a2 cos pzþ a1 sin pzÞ þ

k
q
ða4 cos qz� a3 sin qzÞ;

ð5:7Þ
where ai are constants to be determined, and
p2 ¼ x2

a
� k2; q2 ¼ x2 � k2:
Substituting Eq. (5.7) into the boundary conditions, Eq. (5.6), two uncoupled systems of linear equations
are formed:
x2 � 2k2

k
cos p �2k cos q

�2p sin p �x2 � 2k2

q
sin q

2664
3775 a1

a3

� �
¼ 0; ð5:8Þ

x2 � 2k2

k
sin p �2k sin q

2p cos p
x2 � 2k2

q
cos q

2664
3775 a2

a4

� �
¼ 0: ð5:9Þ
The requirement of the nontrivial solutions for aj leads to dispersion relation by solving the following tran-
scendental equations:

Symmetric mode
ðq2 � k2Þ2 cos p sin qþ 4k2pq sin p cos q ¼ 0;
Antisymmetric mode
ðq2 � k2Þ2 sin p cos qþ 4k2pq cos p sin q ¼ 0:
The above two equations can be combined into one equation:
x4 ¼ 4k2q2 1� p tanðp þ cÞ
q tanðqþ cÞ

� �
; ð5:10Þ
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where c = 0 and p/2 represent symmetric modes and antisymmetric modes, respectively. Eq. (5.10) is iden-
tical to the Rayleigh–Lamb equation which was derived from 2-D plane strain deformation of elastic plates.
The dispersion relation results in an infinite number of wave modes ordered by S0,S1,S2, . . .,A0,A1,A2, . . .
for symmetric and antisymmetric modes, respectively. Figs. 1(b) and 2(b) show the first five modes Si and Ai

(i = 1,2, . . ., 5), respectively.
Based on the above analyses, we may conclude that ð~̂u; ~̂wÞ permit the following elementary eigensolutions

of characteristic equations
~̂u ¼ unðk; zÞ; ~̂w ¼ wnðk; zÞ; n ¼ 1; 2; 3; . . . ; ð5:11Þ
for any real k and any mode xn(k), where the subscript n denotes the wave modes, both symmetric and
antisymmetric modes (for example, n = 1,3,5, . . . represent the antisymmetric modes, n = 2,4,6, . . . repre-
sent the symmetric modes), and (un,wn) are given via Eqs. (5.8) and (5.9) by
un ¼ qn½2k2 cos qn cos pnzþ ðq2n � k2Þ cos pn cos qnz�;

wn ¼ k½2pnqn cos qn sin pnz� ðq2n � k2Þ cos pn sin qnz�;
ð5:12Þ
for symmetric modes, and
un ¼ qn½2k2 sin qn sin pnzþ ðq2n � k2Þ sin pn sin qnz�;
wn ¼ �k½2pnqn sin qn cos pnz� ðq2n � k2Þ sin pn cos qnz�;

ð5:13Þ
for antisymmetric modes.
To compose the complete solution the principle of superposition may be applied to the linear system for

all values of k and all modes. Then, from Eq. (5.11), formally at least,
~̂uðz; k;xÞ ¼
X1
n¼1

anðk;xÞunðz; kÞ;

~̂wðz; k;xÞ ¼
X1
n¼1

anðk;xÞwnðz; kÞ;
ð5:14Þ
where an = an(k,x) may be determined from initial conditions or boundary conditions. The inverse trans-
forms yield the solutions in the form
uðr; z; tÞ ¼
X1
n¼1

Z 1

0

kJ 1ðkrÞAnðt; kÞunðk; zÞdk � H�1
1 fAnung;

wðr; z; tÞ ¼
X1
n¼1

Z 1

0

kJ 0ðkrÞAnðt; kÞwnðk; zÞdk � H�1
0 fAnwng;

ð5:15Þ
where
Anðt; kÞ ¼
1

2p

Z 1

�1
anðk;xÞeixtdx � F �1fanðk;xÞg;
and F�1, H�1
0 , H�1

1 are the inverse operators of the Fourier, Hankel zero-order and first-order transforms,
respectively.

Further, Eq. (5.15) can be evaluated by stationary phase approximation for large values of t. Eq. (5.15)
with Eq. (3.19) also indicate that if a disturbance is produced at a point of an elastic plate, then the waves
can be considered as plane waves at a great distance from the center of disturbance by expanding the Bes-
sel�s functions.
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(B) F � [Fr,Fz]
T 5 0

Now consider the transient wave in an infinite plate excited by the body forces. To construct the solu-
tion, the Hankel transform with respect to r and the Laplace transform with respect to t, are introduced for
the following variables:
~�uðk; z;xÞ ¼
Z 1

0

e�st dt
Z 1

0

rJ 1ðkrÞuðr; z; tÞdr;

~�wðk; z;xÞ ¼
Z 1

0

e�st dt
Z 1

0

rJ 0ðkrÞwðr; z; tÞdr;eF rðz; s; kÞ ¼
Z 1

0

e�st dt
Z 1

0

rJ 1ðkrÞF rðr; z; tÞdr;eF zðz; s; kÞ ¼
Z 1

0

e�st dt
Z 1

0

rJ 0ðkrÞF zðr; z; tÞdr:
Then the transformed equations of Eqs. (5.2) and (5.3) can be written in the matrix form
LeU � s2 eU ¼ �eF ð5:16Þ

1 0
0 a

� �
DeU þ 0 �k

ða� 2Þk 0

� � eU ¼ 0 at z ¼ �1; ð5:17Þ
where eU ¼ ½e�u; ~�w�T, beF ¼ ½eF r;
eF z�T,
L ¼ D2 � ak2 �ða� 1ÞkD
ða� 1ÞkD aD2 � k2

� �
; D ¼ d

dz
; D2 ¼ d2

dz2
:

Introducing the substitution s = ix, it can be readily proved that the elementary solutions Un �
[un(k,z),wn(k,z)]

T provided by Eqs. (5.12) and (5.13) satisfy
LUn þ x2
nUn ¼ 0; ð5:18Þ

1 0

0 a

� �
DUn þ

0 �k

ða� 2Þk 0

� �
Un ¼ 0 at z ¼ �1:
Hence, Un form a complete set of eigenfunctions of the plate, which are homogeneous solutions of Eq.
(5.16), satisfy traction-free conditions at the plate surfaces, Eq. (5.17), and
Z 1

�1

Um �Un dz ¼ 0; m 6¼ n;Z 1

�1

Un �Un dz ¼ MnðkÞ 6¼ 0:
The particular solution of the inhomogeneous Eq. (5.16) may be expressed in the form
eUðz; s; kÞ ¼
X1
n¼1

qnðs; kÞUnðz; kÞ; ð5:19Þ
where qn(s,k) is to be determined.
Substituting Eq. (5.19) into Eq. (5.16), pre-multiplying by UT

n and integrating with respect to z give
qnðs; kÞ ¼
1

ðs2 þ x2
nÞMnðkÞ

Z 1

�1

UT
n ðz; kÞ

eFðz; s; kÞdz:

Thus, the inverse Laplace transform to Eq. (5.19) leads to
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eU ¼
X1
n¼1

UnQn=Mn;
with
Qnðt; kÞ ¼
1

xnðkÞ

Z t

0

F nðs; kÞ sin½xnðt � sÞ�ds;

F nðt; kÞ ¼
Z 1

�1

UT
n ðz; kÞeFðz; t; kÞdz:
Finally, the inverse Hankel transform results in
uðr; z; tÞ ¼
X1
n¼1

Z 1

0

kJ 1ðkrÞ
unðz; kÞ
MnðkÞ

Qnðt; kÞdk;

wðr; z; tÞ ¼
X1
n¼1

Z 1

0

kJ 0ðkrÞ
wnðz; kÞ
MnðkÞ

Qnðt; kÞdk:
ð5:20Þ
where Mn can be expressed as
MnðkÞ ¼ A2 x2

a
� ðp2 � k2Þ sin 2p

2p

� �
þ D2 x2 þ ðq2 � k2Þ sin 2q

2q

� �
þ 4ADk cos p sin q;

A ¼ 2kq cos q; D ¼ ðq2 � k2Þ cos p
for symmetric modes, and
MnðkÞ ¼ B2 x2

a
þ ðp2 � k2Þ sin 2p

2p

� �
þ C2 x2 � ðq2 � k2Þ sin 2q

2q

� �
� 4BCk sin p cos q;

B ¼ 2kq sin q; C ¼ ðq2 � k2Þ sin p
for antisymmetric modes. For brevity the subscript n is dropped in the above equations.
Note that a set of eigenfunctions were used by Weaver and Pao (1982), Eringen and Suhubi (1975) as a

complete set defined in the volume of a finite plate. The transient wave solutions in an infinite plate were
constructed from that in a finite plate.

Considering a transverse point force with magnitude P at (0,0,z0), its dimensionless expression being
F r ¼ 0; F zðr; z; tÞ ¼ I
dðrÞ
2pr

dðz� z0Þf ðtÞ; ð5:21Þ
where I = 4P/(Gh2) is the normalized magnitude of the applied force. In this case the Eq. (5.20) becomes
u

w

� �
¼

X1
n¼1

Z 1

0

k
J 1ðkrÞunðz; kÞ
J 0ðkrÞwnðz; kÞ

� �
wnðz0; kÞ
MnðkÞxn

hnðt; kÞdk ð5:22Þ
with
hnðt; kÞ ¼
I

2pxn

Z t

0

f ðnÞ sinxnðt � nÞdn; n ¼ 1; 2; 3; . . .
If f(t) = d(t), then
u

w

� �
¼ I

2p

X1
n¼1

Z 1

0

k
J 1ðkrÞunðz; kÞ
J 0ðkrÞwnðz; kÞ

� �
wnðz0; kÞ
MnðkÞxn

sinxntdk: ð5:23Þ
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Note that if the force P is located on the mid-plane (z0 = 0), or two equal forces P/2 with same direction act
along the z axis on the two plate surfaces at the same time, then the contribution from the symmetrical
modes is zero. On the other hand, if two equal opposite forces P/2 act along the z axis on the two plate
surfaces at the same time, then the contribution from the antisymmetric modes is zero.

If the pure impulse load is located at r 0 = (r 0,h 0,z 0) and applied at t = t 0, the solution, which is called the
Green�s function for the transverse load, can be obtained by Eq. (5.23) and the coordinate transformation
of displacements.

Eq. (5.23) provides the 3-D elasticity solution for the pure impulse load. For the large values of r and t,
the asymptotic expansions of Eq. (5.23) is
uðr; z; tÞ � I

2p
ffiffiffiffi
rt

p Re
X1
n¼1

k3=2unðz; kÞwnðz0; kÞffiffiffiffiffiffiffiffi
jx00

nj
p

MnðkÞxn

exp iðkr � xnt þ h1Þ; ð5:24Þ

wðr; z; tÞ � I

2p
ffiffiffiffi
rt

p Re
X1
n¼1

k3=2wnðz; kÞwnðz0; kÞffiffiffiffiffiffiffiffi
jx00

nj
p

MnðkÞxn

exp iðkr � xnt þ h2Þ; ð5:25Þ
where
h1 ¼ �pðsgnx00 þ 1Þ=4; h2 ¼ �pðsgnx00 � 1Þ=4;
and k = k(r, t) is the stationary point which is root of the equations
x0
nðkÞ ¼

r
t
; k > 0;

r
t
> 0:
Eqs. (5.24) and (5.25) become invalid if x00
n approaches zero. In this case the Airy approximation may be

required.
Consider a radial, concentrated line force tr (per unit length) act on r = a, z = 1 (circle on the plate top

surface). If a thin circular-patch piezoelectric actuator with radius a bonded perfectly on the isotropic plate,
and a time-dependent voltage is applied to the actuator, then the force applied by the actuator on the plate
may be modeled by the line force.

In this case the body force Fz = 0, and Fr may be expressed as
F rðr; z; tÞ ¼ Qdðr � aÞdðz� 1Þf ðtÞ; ð5:26Þ
where Q = tr/(Gh/2) is the normalized magnitude of the applied line force.
From Eq. (5.20),
u

w

� �
¼ Qa

X1
n¼1

Z 1

0

k
J 1ðkrÞunðz; kÞ
J 0ðkrÞwnðz; kÞ

� �
J 1ðkaÞunð1; kÞ

h0nðt; kÞ
MnðkÞ

dk; ð5:27Þ
with h0nðt; kÞ ¼ 1
xn

R t
0
f ðsÞ sinxnðt � sÞds.
5.1. Comparison of wave modes between plate theory and 3-D elasticity theory

The dispersion relations provided by the plate theory and 3-D elasticity theory for axisymmetric defor-
mation can be compared. Using the same nondimensionalization which is employed in 3-D elasticity
theory, the results are given below:
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5.2. Symmetric mode

There is no cut-off frequency for the fundamental S0 mode. As k ! 0 c,C � cP. This limit is the same as
that in the T0 mode provided by the second-order plate theory. The S1 and S2 modes have cut-off frequen-
cies xc ¼ p

ffiffiffi
a

p
=2 and p respectively; while the T0 and T1 modes give the same values of cut-off frequencies.

When k! 1, the group velocities of S0 mode approach cR being the velocity of Rayleigh waves, all the
higher modes approach the limit cT; while C � p=

ffiffiffiffiffi
15

p
for T0 mode and C � cL for T1 and T2 modes.

In Fig. 1(b), group velocity dispersion curves of three wave modes (T0,T1,T2) of the plate theory and the
first five wave modes (S0,S1, . . .,S4) of 3-D elasticity theory for m = 0.33 are plotted for comparison. The
fundamental T0 and S0 modes have a similar trend. It is worth of noting that according to the classical plate
theory the T0 mode is nondispersive. The first-order plate theory proposed by Kane and Mindlin (1956)
adds the linear term in the transverse displacement w, the mode T0 becomes dispersive, improved substan-
tially from classical plate theory. However, the deviation of dispersive T0 curve from the exact 3-D S0 curve
increases as x increases. The current second-order plate theory provides a better agreement between the T0

mode and the S0 mode. The first fundamental T0 dispersion curve matches well with the S0 curve in the
frequency region less than p/2 and then the group velocities of the plate theory are underestimated prior
to the first cut-off frequency.

For small values of k, frequency x decreases with increase of k for S1 mode, thus C is negative. T1 mode
has a similar feature. The T1 mode is close to S1 mode in the immediate neighborhood of the cut-off fre-
quency. Beyond the cut-off frequency, group velocities from the plate theory become overestimated for
the rest of frequency region. The group velocities of both T1 and T2 modes from plate theory diverge from
those in the S1 and S2 modes obtained from the exact 3-D elasticity theory when the frequency increases.
From above, it shows that the second-order plate theory can better describe the extensional wave behavior
in plates from low to relatively high frequency ranges than the first-order theory.

5.3. Antisymmetric mode

There is no cut-off frequency for the fundamental A0 mode. As k ! 0, x � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a�1Þ=3

p
k2. The cut-off

frequency of the A1 mode gives xc = p/2. As k! 0, the higher-order plate theory leads to x � k2
ffiffiffiffiffiffiffiffi
a=3

p
for

B0 mode, xc = p/2 for B1 mode. At the high-frequency region, C � cR for A0 mode, C � 1 (being normal-
ized by cT) for all the higher order modes Ai (iP 1), but C � p=

ffiffiffiffiffi
12

p
and cL for B0 mode and B1 mode

respectively. In Fig. 2(b), group velocity dispersion curves of two wave modes (B0,B1) of the plate theory
and the first five wave modes (A0,A1, . . .,A4) of 3-D elasticity theory for m = 0.33 are plotted for compar-
ison. There is a good agreement in the fundamental B0 mode in all the frequency ranges and in the begin-
ning part of B1 mode. It can be seen in detail that the fundamental B0 dispersive curve matches well with the
A0 curve in the frequency prior to p/5 and then the group velocities from the plate theory are lower than
those obtained from 3-D elasticity theory. The group velocities of B1 mode from plate theory diverge from
the exact theory as the frequency increases.
6. Numerical results and discussion

Consider a plate of homogeneous, isotropic, linearly elastic material. A vertical point force is applied on
the top surface of plate at t > 0. In this case, the wave motion in the plate is axially symmetric. The load can
be expressed as body force in the form
Fðr; z; tÞ ¼ I
dðrÞ
2pr

dðz� z0Þf ðtÞiz; ð6:1Þ
where iz is the unit vector in the z-direction, z0 = 1. Two types of transverse load are considered:
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(a) seven-peak narrow-band load
f ðtÞ ¼ HðtÞ � H t � 2pN
p


 �� �
1� cos

pt
N

	 

sin pt ðN ¼ 7Þ;
(b) unlimited-band pure impulse point load, f(t) = d(t).

For the load of seven-peak signal in which a sinusoidal toneburst is modulated by a Hanning window to
limit the bandwidth, two central frequencies, p = p/5, p/2, are taken in the calculation. Note that the first
cut-off frequency is p/2. The value I = 1 is used in all cases, for convenience.

According to the higher-order plate theory, the dynamic response of the plate is sought as the superpo-
sition of responses due to the extensional load m, and the bending load q. Similarly, the wave solution of
3-D elasticity can be expressed as a summation over the symmetric and the antisymmetric modes. Both
solutions based on the plate theory and based on the 3-D elasticity are presented in Figs. 3–5. Three quan-
tities, radial displacement, u, transverse displacement, w, and the sum of in-plane strains, eaa� er + eh, on
the top surface z = 1 at
r ¼ 300 for the 7-peak load with p ¼ p=5;

r ¼ 200 for the 7-peak load with p ¼ p=2;

r ¼ 100 for f ðtÞ ¼ dðtÞ;
are shown in Figs. 3–5, respectively.
The solutions Eq. (3.13) and (4.17) given by the plate theory, and the solution Eq. (5.22) given by 3-

D elasticity are the integral representations with the infinite upper limit k = 1. They can be integrated
numerically. Integration is carried in the wave number domain using trapezoidal rule, and different step
sizes are applied to different regions of k. For each mode, the upper limit k =1 of the integration is
replaced by a largest wave number corresponding a group velocity C which is greater than 99.5% of its
limit as k ! 1, and the interval of the wave number is limited by the condition Dk 6 [3(cLT + r)]�1,
where r is the source-receiver distance, and the time duration is limited by t < T (Santosa and Pao,
1989).

For the seven-peak load with p = p/5, the numerical data are evaluated from the first four modes, B0, B1,
T0, and T1 of the plate theory, A0, A1, S0, and S1 modes of 3-D elasticity. In fact, the first two modes, B0

and T0, A0 and S0, are the leading terms, and the contribution from other higher-order modes may be
disregarded.

For the seven-peak load with p = p/2, the plate solution includes all five modes (three extensional modes
and two flexural modes), and the solution of 3-D elasticity theory is composed of the first six modes, Ai, Si,
(i = 0, 1, 2). Actually, the first three modes, B0, B1, and T0, A0, A1, and S0 play a dominant role in the two
solutions respectively, and the contribution from rest of the modes may be neglected.

Due to dispersion two wave packets can be seen in Figs. 3 and 4. The wave packet with large amplitude
and low speed is dominated by A0, or B0 mode, and the wave packet with small amplitude and high speed is
mainly caused by S0, or T0 mode. The effect of the higher-order modes on the entire response of the plate
increases with the central frequency p.

For the pure impulse point load without the band limit, the summation over the modes is truncated
at the first 10 modes, Ai, Si, (i = 0,1,2,3,4) in the 3-D elasticity solution, while all the plate wave
modes are included in the solution of plate theory. Both results demonstrate a sharp disturbance with
large amplitude in a short period as shown in Fig. 5, and the values of amplitude is beyond the scale
of the figures. As expected, the high-frequency oscillations are not present in the higher-order plate
theory.
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Fig. 3. The wave response, u, w, and eaa, on the top surface as a function of t under a seven-peak excitation wave (p = 0.2p) at r = 300.
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Fig. 4. The wave response, u, w, and eaa, on the top surface as a function of t under a seven-peak excitation wave (p = p/2) at r = 200.
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Fig. 5. The wave response, u, w, and eaa, on the top surface as a function of t under an impulse excitation wave, f(t) = d (t), at r = 100.
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Comparing the plate solution with the response based on 3-D elasticity shows that when the central fre-
quency p is in the low-frequency region, the two solutions are very close to each other. Even at p = p/2 being
in the middle-frequency region, the plate theory solutions can still provide fairly good results. However,
the difference between the two solutions increases with p. At this central frequency p = p/2 = xc,
h/kc 	 0.6 (kc is the wavelength of the first flexural mode A0, or B0, at x = xc). Note that the classical plate
theory is limited to the plates with thickness h/kc < 0.095 (or h/ks < 20 given by Junger and Feit, 1972).
It seems that the validity of the plate theory is limited to the frequency range p 6 xc for a plate with m = 0.33.

Within the resolution of the numerical data, both solutions for the pure impulse point load exhibit a very
similar pattern with some degree of phase shift, although the plate theory is incapable of modeling high-
frequency response, yet this response being characterized by smaller values of amplitude. It seems that
the fundamental A0 mode makes a great contribution for the transverse load without limited band. Because
the B0 mode matches well with the A0 mode, thus a resembling shape can be expected in the wave packets.
Expanding the displacement field in its Taylor series of about z = 0, and retaining up first two terms for w,
first three terms for u and v, the plate theory can describe the wave propagation very well at low frequencies,
and provides fairly good result beyond the low-frequency region. However, at high frequency, the real dis-
placement field can not be well characterized by its two-term, or three-term Taylor series expansion, from
the view of the 3-D elasticity. Therefore, it seems that the plate solutions underestimate the amplitude of the
displacement on the plate surface in the period of the sharp oscillation.
7. Conclusions

To correctly describe the wave behavior in the relatively high frequencies, a higher-order plate theory for
modeling both extensional and flexural waves is developed. The aim of developing this plate theory is to
provide a simple, yet accurate approach to predict the wave response in the higher frequencies range so that
the smaller size of damage can be detected with good resolution used in the ultrasonic inspection techniques
and structural health monitoring. The dispersion curves from the plate theory has been examined in detail
and compared with those obtained from the 3-D elasticity theory. The higher-order plate theory only re-
quires few terms to determine the wave behavior of linearly isotropic plates, thus a more efficient approach.
Through integral transforms and dispersion relations, integral solutions with closed-form for a number of
excitation loads based on higher-order plate theory and 3-D elasticity are developed. Green�s functions are
also provided. Through comparison of the wave responses based on the two theories to narrow-band seven-
peak and unlimited-band pure impulse transverse loads, it can be concluded that for the narrow-banded
excitation the range of validity of using higher-order plate theory is suitably applied to higher frequency
ranges up to the first cut-off frequency; for unlimited band-excitation the higher-order plate theory provides
reasonably similar wave packets.
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Appendix A. Axisymmetric wave solutions using classical plate theory

A.1. Extensional wave

A state of generalized plane stress is assumed in the linear classical plate theory. Note that the validity of
classical plate theory is limited to plates where the plate thickness is less than one-twentieth of a typical
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shear wavelength (Junger and Feit, 1972). According to Eq. (1.9), the dimensionless equation of motion in
terms of displacement for axisymmetric extensional wave in the classical plate theory is
b r2 � 1

r2


 �
uþ R ¼ €u; t > 0; ðA:1Þ
where b ¼ 2=ð1� mÞ ¼ c2p=c
2
T , u = u(r, t) and R = R(r, t) are the normalized displacement and body force in

the radial direction, respectively. This equation can be solved using the joint Laplace and Hankel trans-
forms. Applying the transforms to Eq. (A.1) and assuming zero initial conditions, the transformed solution
yields
~�uðk; sÞ ¼
eRðk; sÞ
s2 þ W 2

; ðA:2Þ
where W2 � x2 = bk2 is the relation between frequency x and wave number k,
~�uðk; sÞ ¼
Z 1

0

expð�stÞdt
Z 1

0

rJ 1ðkrÞuðr; tÞdr;

eRðk; sÞ ¼ Z 1

0

expð�stÞdt
Z 1

0

rJ 1ðkrÞRðr; tÞdr:
ðA:3Þ
Clearly the extensional wave based on the classical plate theory is not dispersive. Assuming the load R is
a separation-of-variables type in r and t, R(r, t) = Rr(r)f(t), the joint inverse transform gives the formal
solution
uðr; tÞ ¼
Z 1

0

kJ 1ðkrÞ
W

~�RrðkÞdk
Z t

0

f ðnÞ sinW ðt � nÞdn: ðA:4Þ
As an example of application of the solution (A.4), let the plate be compressed by two equal and opposite
point forces P acting along the z axis on two surfaces of the plate. Imagine that a small cylindrical region of
small radius which is separated from the plate is acted upon by the loads P, the radial reactions along the
lateral boundary induced by P. From equilibrium, the uniform pressure p acting on the cylindrical surface
of the plate with a small hole can be obtained (p = 2mP/[(1 + m)pb2], b is the radius of the hole; Timoshenko
and Woinowsky-Krieger, 1959). As the radius of the hole approaches zero, the radial body force for the
plate with the hole can be expressed as
R ¼ m
pð1þ mÞ

P
Ghrg

dðrÞ
r2

f ðtÞ ¼ b� 2

2pðb� 1Þ
P

Ghrg

dðrÞ
r2

f ðtÞ:
If f(t) = d(t), then
uðr; tÞ ¼ I
4p

b� 2

b� 1

Z 1

0

k2

W
J 1ðkrÞ sinWtdk; ðA:5Þ

uðr; tÞ � I
2p

ffiffiffiffiffiffiffiffiffiffi
2pbr

p b� 2

b� 1

Z 1

0

ffiffiffi
k

p
sin kr � p

4

	 

sinð

ffiffiffi
b

p
ktÞdk; as r ! 1; ðA:6Þ
where I = P/(Ghrg). the horizontal load along the radial direction.
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A.2. Flexural wave

According to the classical plate theory, the nondimensional equation of motion in terms displacement
may and take the form
€wþ ar2r2w ¼ q; t > 0: ðA:7Þ
Applying the Laplace and the zero-order Hankel transform to Eq. (A.7) with zero initial conditions, we
have
~�w ¼
~�q

s2 þ ak4
¼

~�q

s2 þ W 2
; ðA:8Þ
where W2 � x2 = ak4, this is the dispersion relation for classical plate theory, here W represents the fre-
quency x, and k, the Hankel transform variable, represents the wave number. The phase and group veloc-
ities can be easily obtained as C ¼ 2c ¼

ffiffiffi
a

p
k.

The inverse Laplace transform to Eq. (A.8) gives
~wðk; tÞ ¼ L�1
~�qðk; sÞ
s2 þ W 2

� �
¼ 1

W

Z t

0

~qðk; nÞ sinW ðt � nÞdn: ðA:9Þ
For the point load, q ¼ 1
2p

dðrÞ
r f ðtÞ, Eq. (A.9) becomes
~wðk; tÞ ¼ 1

2pW

Z t

0

f ðnÞ sinW ðt � nÞdn: ðA:10Þ
If the point load is the rectangular impulse, f(t) = [H(t) � H(t � T)]q0, Eq. (A.9) becomes
~wðk; tÞ ¼ q0
2p

ð1� cosWtÞ
W 2

for 0 < t < T ; ðA:11Þ

~wðk; tÞ ¼ q0
2p

cosW ðt � T Þ � cosWt

W 2
for T < t: ðA:12Þ
By the Hankel inverse transform,
wðr; tÞ ¼ q0
2p

Z 1

0

kJ 0ðkrÞ
ð1� cosWtÞ

W 2
dk for 0 < t < T ; ðA:13Þ

wðr; tÞ ¼ q0
2p

Z 1

0

kJ 0ðkrÞ
cosW ðt � T Þ � cosWt

W 2
dk for T < t: ðA:14Þ
Sneddon (1951) and Medick (1961) defined a function
F ðxÞ ¼ p=2� SiðxÞ � xCiðxÞ � sin x; ðA:15Þ

where Si(x) and Ci(x) are the sine and cosine integrals. Then the following integral can be expressed as
Z 1

0

J 0ðnÞ
1� cos bn2

n3
dn ¼ 1

2
F

1

4b


 �
: ðA:16Þ
Using Eq. (A.16) and replacing kr by n, Eqs. (A.13) and (A.14) may be written as
wðr; tÞ ¼ q0t
4p

ffiffiffi
a

p F
r2

4
ffiffiffi
a

p
t


 �
; 0 < t < T ; ðA:17Þ
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wðr; tÞ ¼ q0
4p

ffiffiffi
a

p tF
r2

4
ffiffiffi
a

p
t


 �
� ðt � T ÞF r2

4
ffiffiffi
a

p
ðt � T Þ

� �� �
; t > T : ðA:18Þ
This solution is called Medick solution. For large values of r and t, the solution for classical plate theory
approaches asymptotically
wðr; tÞ � 8
ffiffiffi
a

p
q0

p
ffiffiffiffi
rt

p r
t

	 
�7=2

sin
T

8
ffiffiffi
a

p r
t

	 
2
� �

Re exp i
T

8
ffiffiffi
a

p r
t

	 
2
� �

e
i
r=t
2
ffiffi
a

p ðr�0:5rttÞ
� �

ðA:19Þ
or
wðr; tÞ � q0T

p
ffiffiffiffi
rt

p r
t

	 
�3=2

cos
1

2
ffiffiffi
a

p r
t

r � 1

2

r
t
t


 �� �
; T � 1 � t: ðA:20Þ
If f(t) = d(t), since
dðtÞ ¼ dHðtÞ
dt

¼ HðtÞ � Hðt � T Þ
T

; as T ! 0;
from (A.10) and (A.18),
wðr; tÞ ¼ q0
2p

Z 1

0

kJ 0ðkrÞ
sinWt
W

dk ¼ q0
4p

ffiffiffi
a

p F
r2

4
ffiffiffi
a

p
t


 �
� r2

4
ffiffiffi
a

p
t
F 0 r2

4
ffiffiffi
a

p
t


 �� �
:

Note the asymptotic expansion, Eq. (A.20), is identical to that for the pure impulse, q ¼ q0T
2p

dðrÞ
r dðtÞ. If Eq.

(A.19), or (A.20), is to be written in a form as w � Re {A(r,t)eih(r,t)}, it is ready to show a flexural wavetrain
with phase velocity c = 0.5r/t, the wave amplitude decreases like (r/t)�1/2 along a ray r/t = C, and jAj2, or
the energy, propagates with the group velocity C = r/t.
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